SANDIA REPORT

SAND2017-8890
Unlimited Release
Printed August 2017

Recommendations on a Document
Structure Format for Automatic
Report Generation

Aidan Hendrickson, Philippe P. Pébay

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

SAND2017-8890
Unlimited Release
Printed August 2017

Recommendations on a Document Structure
Format for Automatic Report Generation

Aidan Hendrickson, Philippe P. Pébay
08753, 08753
Sandia National Laboratories
Livermore, CA 94551
U.S.A.

Abstract

In this report we propose a new, extensible and flexible methodology to describe the structure
of documents for the Automatic Report Generator (ARG) currently being developed at
Sandia.

Acknowledgments

The authors of this report wish to express their gratitude to Robert Clay and Nathan Spencer
(Sandia) for supporting this work, and to thank Ernest Friedman-Hill (Sandia) for offering
advice as to how the current work might be interfaced with the Next Generation Workflow.

They also acknowledge that the example pictures used to illustrate this document were
generated from an exemplar data set created by Nathan Spencer, and allowed for unlimited
release with review and approval number SAND2017-5827.

Contents

1 Introduction

1.1 Disclaimero

1.2 Background

1.3 JSON and YAML

1.4 Other Data Formats

Recommendations

2.1 A New YAML-Based Schema i

2.2 A New JSON-Based Schema, i

2.3 Examples

3 Conclusion

10

11

11

14

20

29

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29

Translucent surface rendering of Package.e colored by Objectld. 21
Surface rendering of Package.e colored by Objectld. 22
Plane clip of Package.e colored by Objectld. 23
Plane clip of Package.e colored by Objectld. 24
Plane multi-clip of Package.e colored by Objectld........................ 24
Plane multi-clip of Package.e colored by Objectld........................ 25
Perpendicular plane cuts of Package.e colored by Objectld. 26
Sections of Package.e colored by Objectld. 27
Spread cross-section of Package.e colored by Objectld. 28

List of Tables

This page intentionally left blank.

Chapter 1

Introduction

1.1 Disclaimer

This report was generated using a new data input structure for the Automatic Report Gen-
erator (ARG) currently being developed at Sandia. However, as the ARG is still work in
progress; the present document should be viewed as a proof of concept report.

Furthermore, this document is about a proposed interface between the ARG and other tools;
e.g., a graphical user interface allowing a user to visually assemble a document structure.
The schemata described below are therefore meant for developers of such applications, not
for prospective users of the ARG.

1.2 Background

Previous versions of the ARG have accepted structural input in the form of a comma-
separated values (CSV) file format. However, this ad hoc format, introduced in the early
phase of ARG development in order to allow for immediate production of example documents,
is inflexible and hardly legible to a novice human user, particularly for complex report
artifacts such as visualizations.

Meanwhile, this CSV format has the advantage of being easily interfaced with the San-
dia Analysis Workflow (SAW) toolchain. While moving away from CSV will likely make
things easier for both users and developers of the ARG, compatibility with SAW may be an
important factor in deciding which alternative data format is best.

1.3 JSON and YAML

JSON can be seamlessly integrated into the dictionary and list structures of JavaScript and
Python; for this reason in particular, it is widely used for web applications. It is more
efficient than XML. However, the dictionary-like syntax requires large numbers of carefully

9

placed commas and quotation marks, making it difficult to write and edit. Furthermore,
JSON does not support comments.

YAML is a recursive acronym that stands for "YAML Ain’t Markup Language". Being a
superset of JSON, it supports most JSON syntax as well as several new features including
comments. Designed for human input rather than data exchange, YAML syntax is simple
and easy to use, organized by indentations instead of brackets. There are two libraries
that support YAML in python. PyYAML is no longer maintained, so the ARG implements
ruamel.yaml. The library can be installed with he following command:

pip install ruamel.yaml.

In contrast, JSON is slightly more compact and efficient to parse and requires no dependency.
While YAML is becoming more widespread, so is JSON (as XML declines), which is currently
the dominant data interchange format on the web.

1.4 Other Data Formats

XML is a widely used text markup language, designed to process data that is primarily
text—even so, it has been widely used for data exchange on the web. While it remains
popular, its use is now steeply declining—According to Google Trends, searches for JSON
first surpassed those for XML in 2016.

XML handles text well—an advantage would allow the various supporting text files to be
combined into a single file. However, data for charts and images would be messy. Embedded
JSON could solve this problem, but would reduce simplicity and portability.

XML is less efficient (in terms of space and time), less readable, and declining in popularity
when compared to JSON and YAML, thus XML routes appears to be riskier in terms of
both ease of use and long-term maintainability.

10

Chapter 2

Recommendations

2.1 A New YAML-Based Schema

This SAND report was created by the Automatic Report Generator (ARG) with the following
command was issued:

python ARG.py -u -s s.yaml -r SAND -c constants.in -a abstract.txt -t thanks.txt

where s.yaml is a YAML data file describing the high-level structure of the report; this
report was generated with the following structure:

#Title directive
title:
type: sd
file: Modal.inp
#Report
chapters:
- n: tex_chapter
title: Introduction
sections:
- n: tex_section
title: Disclaimer
text: disclaimer.tex
- n: tex section
title: Background
text: history.tex
- n: tex_section
title: JSON and YAML
text: yaml paragraph.tex
- n: tex section
title: Other Data Formats
text: other_formats.tex
- n: tex_chapter
title: Recommendations

11

sections:
- n: tex _section
title: A New YAML-Based Schema
sections:
- n: tex_paragraph
text: introduction.tex
- n: tex_verbatim
text: SAND2017-XXXX.yaml
- n: tex section
title: A New JSON-Based Schema
sections:
- n: tex_paragraph
text: data formats.tex
- n: tex verbatim
text: SAND2017-XXXX_auto.json
- n: tex_paragraph
text: recursion.tex
- n: tex section
title: Examples
text: vtk demonstration.tex
- n: vtk
width: 8cm
view direction: [15.0, -35.0, 0.0]
model: Package.e
var_name: ObjectId
render: surface
opacity: .5
- n: vtk
width: 8cm
view_direction: [11.1, -14.8, 0.0]
model: Package.e
var_name: ObjectId
render: surface_with_edges
- n: vtk
width: 8cm
view_direction: [15.0, -35.0, 0.0]
model: Package.e
var_name: ObjectId
render: clip
normal vector: [0.,1.,.8]
- n: vtk
width: 8cm
view_direction: [15.0, -35.0, 0.0]
model: Package.e
var_name: ObjectId

12

render: clip

normal vector: [0.,1.,.8]
#optional parameters:

opacity: .b

ghost_opacity: .1

ghost_wireframe: True

n: vtk

width: 8cm

view direction: [15.0, -35.0, 0.0]
model: Package.e

var_name: ObjectId

render: multiclip

normal vectors: [[0,1,1],[0,1,0],[-1,0,.5]1]
n: vtk

width: 8cm

view_direction: [15.0, -35.0, 0.0]
model: Package.e

var_name: ObjectId

render: multiclip

normal vectors: [[0,-1,1],([0,1,1],[-1,0,0]]
#optional parameters:
ghost_opacity: 1

n: vtk

width: 8cm

view direction: [15.0, -35.0, 0.0]
model: Package.e

var_name: ObjectId

render: multicut

#optional parameters:
slice_number: 9

n: vtk

width: 8cm

view_direction: [15.0, -35.0, 0.0]
model: Package.e

var_name: ObjectId

render: 3Dcut

normal vector: [0,2,1]

#optional parameters:

slice number: 1

ghost_opacity: .05
ghost_wireframe: True

n: vtk

width: 16cm

view direction: [15.0, -35.0, 0.0]
model: Package.e

13

var_name: ObjectId
render: slice
normal vector: [0,1,1]
#optional parameters:
slice_number: 20
slice_width: 1
gap_width: 1
- n: tex_chapter
title: Conclusion
text: recommendations.tex

2.2 A New JSON-Based Schema

What follows is the same report structured, converted programmatically into JSON—this
JSON file could also be used as input to generate this report. With either input file type,
reading the following as a series of nested dictionaries and lists in python, this was the data
structure used by the ARG to generate this report:

{
"chapters": [
{
"n": "tex_chapter",
"sections": [

{
"text": "disclaimer.tex",
"n": "tex_section",
"title": "Disclaimer"

3,

{
"text": "history.tex",
"n": "tex_section",
"title": "Background"

1,

{
"text": "yaml_paragraph.tex",
"n": "tex_section",
"title": "JSON and YAML"

1,

{
"text": "other_formats.tex",
"n": "tex_section",

"title": "Other Data Formats"

14

¥

1,
"title": "Introduction"
},
{
"n": "tex_chapter",
"sections": [
{
"n": "tex section",
"sections": [
{
"text": "introduction.tex",
"n": "tex_paragraph"
},
{
"text": "SAND2017-XXXX.yaml",
"n": "tex_verbatim"
}
1,
"title": "A New YAML-Based Schema"
.
{
"n": "tex section",
"sections": [
{
"text": "data_formats.tex",
"n": "tex_paragraph"
},
{
"text": "SAND2017-XXXX_auto.json",
"n": "tex_verbatim"
},
{
"text": "recursion.tex",
"n": "tex_paragraph"
}
1,
"title": "A New JSON-Based Schema"
1,
{
"text": "vtk demonstration.tex",
"n": "tex_section",
"title": "Examples"
1,
{

15

"opacity": 0.5,
"width": "8cm",

"var_name": "ObjectId",
"render": "surface",
"model": "Package.e",
"view_direction": [
15.0,
-35.0,
0.0
1,
"n": "vtk"

"width": "8cm"

"var_name": "ObjectId",
"render": "surface_with
"model": "Package.e",
"view direction": [
11.1,
-14.8,
0.0
1,
llnll : llvtkll

"width": "8cm",

"var_name": "ObjectId",
"render": "clip",
"model": "Package.e",
"view_direction": [
15.0,
-35.0,
0.0
1,
"normal vector": [
0.0,
1.0,
0.8
1,
llnll: llvtkll

"opacity": 0.5,
"render": "clip",
"view_direction": [

_edges",

16

15.0,

-35.0,

0.0
1,
"normal vector": [

0.0,

1.0,

0.8
1,
"n": "vtk",
"width": "8cm",
"var_name": "ObjectId",
"ghost_opacity": 0.1,
"model": "Package.e",
"ghost_wireframe": true

-

"width": "8cm",
"var_name": "ObjectId",
"render": "multiclip",
"model": "Package.e",
"view_direction": [

15.0,

-35.0,

0.0
1,

"normal vectors": [

1,
llnll : ”Vtk"

}:

17

"render": "multiclip",
"view_direction": [
15.0,
-35.0,
0.0
1,
llnll: llvtkll R
"width": "8cm",
"var_name": "ObjectId",
"model": "Package.e",

"ghost_opacity": 1,
"normal vectors": [

"width": "8cm",
"var_name": "ObjectId",
"render": "multicut",
"'model": "Package.e",
"view_direction": [
15.0,
-35.0,
0.0
1,
"slice number": 9,
"n": "vtk"

"render": "3Dcut",

18

"view_direction": [
15.0,
-35.0,
0.0
1,
"normal vector": [
0,
2,
1
1,
"n": "vtk",
"width": "8cm",
"var_name": "ObjectId",
"ghost_opacity": 0.05,
"model": "Package.e",
"ghost_wireframe": true,
"slice_number": 1

"gap_width": 1,
"render": "slice",
"slice_width": 1,
"view direction": [
15.0,
-35.0,
0.0
1,
"normal vector": [
0,
1,
1
1,
"n": "vtk",
"width": "16cm",
"var_name": "ObjectId",
"model": "Package.e",
"slice_number": 20
}
1,
"title": "Recommendations"
},
{
"text": "recommendations.tex",
"n": "tex_chapter",
"title": "Conclusion"

19

}
1,
"title": {
"type": "sd",
"file": "Modal.inp"
+

In contrast to CSV, this data format supports recursion: i.e. chapters and sections can be
written in a nested format (as opposed to simply marking the start of each new section). As
a result, recursive structures or formatting tools could be added to the ARG.

More importantly, the nested structure makes it intuitive to follow the natural hierarchy of
chapters, sections, and further subdivisions: the input now resembles an outline.

Furthermore, this nested structure is flexible and optional, and it currently has no effect on
the appearance of the report.

2.3 Examples

The following illustrations demonstrate the capabilities of the new data format for handling
images. This data format allows for optional parameters that default to a value when not
provided in the input (i.e. opacity defaults to 1). This feature can be added to more
parameters in the future including size, view angle, and normal angle.

20

Figure 2.1. Translucent surface rendering of Package.e
colored by Objectld.

21

Figure 2.2. Surface rendering of Package.e colored by Ob-
jectld.

22

Figure 2.3. Plane clip of Package.e colored by Objectld.

23

Figure 2.4. Plane clip of Package.e colored by Objectld.

Figure 2.5. Plane multi-clip of Package.e colored by Ob-
jectld.

24

Figure 2.6. Plane multi-clip of Package.e colored by Ob-
jectld.

25

Figure 2.7. Perpendicular plane cuts of Package.e colored
by Objectld.

26

Figure 2.8. Sections of Package.e colored by Objectld.

27

Figure 2.9. Spread cross-section of Package.e colored by
Objectld.

28

Chapter 3

Conclusion

The ARG currently supports JSON, YAML, and CSV.

For the transmission of data, JSON is the superior choice, thanks to its widespread use in
many applications and libraries. YAML, however, is much friendlier to a user or developer
interacting directly with this data.

We contend that, as long as the ARG depends on human-written data files, YAML is the
appropriate choice. As development continues, support for one or more of these data types
may be phased out as it is no longer useful.

Finally, we recommend that XML not be considered as a document structure description
modality for automatic report generation.

29

DISTRIBUTION:

1 MS 9159 Aidan Hendrickson, 08753
1 MS N/A Philippe P. Pébay, 08753
1 MS 0899 Technical Library, 8944 (electronic copy)

30

31

v1.40

@ Sandia National Laboratories

32

